«Рассмотрено» На заседании ШМО Руководитель ШМ _____Идрисов Р.Р. Протокол № 1 ___ 25.08 .2021 «Согласовано»
Заместитель
директора по УР
«Школа № 47»
_____ Зиннатова 3.В
______ 26. 08.2021

«Утверждаю» Директор МБОУ «Школа № 47» ____ А.В.Афонский Приказ № 127 от 27 .08.2021

Рабочая программа

по астрономии в 11 классе

МБОУ «Средняя общеобразовательная школа № 47

Советского района г.Казани

на 2021-2022 учебный год

Учитель физики- Кулаева Елена Павловна

І. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по астрономии для 11 класса составлена в соответствии со следующими нормативными документами:

Нормативными документами для составления рабочей программы являются:

- 1. Федеральный закон от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- 2.Закон Республики Татарстан от 22.07.2013 г. № 68-ЗРТ «Об образовании»;
- 3. Федеральный государственный образовательный стандарт среднего общего образования (с изменениями и дополнениями от 29.12.2014, 31.12.2015, 29.06.2017).
- 4.Приказ Министерства образования и науки Российской Федерации от 31 декабря 2015 г. № 1578 «О внесении изменений в федеральный государственный образовательный стандарт среднего общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от 17 мая 2012 г. № 413»;
- 5. Примерная программа по учебному предмету **Астрономия.** Методическое пособие 10–11 классы. Базовый уровень: учеб пособие для учителей общеобразоват. организаций. М.: Просвещение, 2017.. 6.Приказ МО и Н РФ от 31 марта 2014 г. №253 «Об утверждении федерального перечня учебников, рекомендованных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего и среднего общего образования»;
- 7.Приказ Министерства образования и науки РФ от 8 июня 2015 г. № 576 «О внесении изменений в федеральный перечень учебников, рекомендованных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального и общего, основного общего, среднего общего образования, утвержденного приказом министерства образования и науки Российской федерации от 31 марта 2014 г. № 253;
- 8.Учебный план МБОУ «Средняя общеобразовательная школа №47» Советского района г. Казани на 2021-2022 учебный год;
- 9.Положение о рабочей программе учебного предмета, курса, дисциплины МБОУ «Средняя общеобразовательная школа №47» Советского района г. Казани;
- 10.Положение о текущем контроле успеваемости и промежуточной аттестации учащихся МБОУ «Средняя общеобразовательная школа №47» Советского района г. Казани; 10.

Рабочая программа по учебному предмету «Астрономия» (10 класс) разработана на основе Примерной основной образовательной программы среднего общего образования (ПООП СОО 2016 г.) и требований, представленных в Федеральном государственном образовательном стандарте среднего общего образования (ФГОС СОО 2012 г.), с использованием авторской программы В.М. Чаругина «Астрономия. Изучение астрономии на базовом уровне ориентировано на обеспечение общеобразовательной и общекультурной подготовки выпускников.

Астрономия рассматривается как курс, который, завершает физико- математическое образование выпускников средней школы, знакомит их с современными представлениями о строении и эволюции Вселенной и способствует формированию научного мировоззрения.

Курс астрономии не только завершает физико-математическое образование, но и несет в себе определенный общенаучный и культурный потенциал. Астрономия является завершающей философской и мировоззренческой дисциплиной, и ее преподавание есть необходимость для качественного полного естественнонаучного образования. Без специального формирования астрономических знаний не может сформироваться естественнонаучное мировоззрение, цельная физическая картина мира.

Астрономия может показать единство законов природы, применимость законов физики к небесным телам, дать целостное представление о строении Вселенной и познаваемости мира.

Важнейшими задачами астрономии являются формирование представлений о единстве физических законов, действующих на Земле и в безграничной Вселенной, о непрерывно происходящей эволюции нашей планеты, всех космических тел и их систем, а также самой Вселенной.

Программа по астрономии определяет содержание и структуру учебного материала, последовательность его изучения, пути формирования системы знаний, умений и способов деятельности, развития, воспитания и социализации учащихся

II. Цели и задачи изучения астрономии.

Цели:

- осознание принципиальной роли астрономии в познании фундаментальных законов природы и формировании современной естественнонаучной картины мира;
- приобретение знаний о физической природе небесных тел и систем, строении и эволюции Вселенной, пространственных и временных масштабах Вселенной, наиболее важных астрономических открытиях, определивших развитие науки и техники;
- овладение умениями объяснять видимое положение и движение небесных тел принципами определения местоположения и времени по астрономическим объектам, навыками практического использования компьютерных приложений для определения вида звездного неба в конкретном пункте для заданного времени;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний по астрономии с использованием различных источников информации и современных информационных технологий;
- использование приобретенных знаний и умений для решения практических задач повседневной жизни;
 - формирование научного мировоззрения; формирование навыков использования естественнонаучных и особенно физико-математических знаний для объективного анализа устройства окружающего мира на примере достижений современной астрофизики, астрономии и космонавтики.

формирование и развитие у обучающихся астрономических знаний и умений для понимания явлений и процессов, происходящих в космосе, формирование единой картины мира.

ЗАДАЧИ:

- Приобретение знаний и умений для использования в практической деятельности и повседневной жизни:
- Овладение способами познавательной, информационно-коммуникативной и рефлексивной деятельностей;
- Освоение познавательной, информационной, коммуникативной, рефлексивной компетенций.

III. Количество часов

Согласно базисному учебному плану рабочая программа рассчитана на 34 часов в год, 1 час в неделю.

IV. Содержание учебного предмета

Общая характеристика учебного предмета.

Астрономия в российской школе всегда рассматривалась как курс, который, завершая физикоматематическое образование выпускников средней школы, знакомит их с современными представлениями о строении и эволюции Вселенной и способствует формированию научного мировоззрения. В настоящее время важнейшими задачами астрономии являются формирование представлений о единстве физических законов, действующих на Земле и в безграничной Вселенной, о непрерывно происходящей эволюции нашей планеты, всех космических тел и их систем, а также самой Вселенной. Астрономия является предметом по выбору и реализуется за счет школьного или регионального компонента. Изучение курса рассчитано на 35 часов. При планировании 2 часов в неделю курс может быть пройден в течение первого полугодия в 11 классе. При планировании 1 часа в неделю целесообразно начать изучение курса во втором полугодии в 10 классе и закончить в первом полугодии в 11 классе. Важную роль в освоении курса играют проводимые во внеурочное время собственные наблюдения учащихся. Специфика планирования этих наблюдений определяется двумя обстоятельствами. Во - первых, они (за исключением наблюдений Солнца) должны проводиться в вечернее или ночное время. Во-вторых, объекты, природа которых изучается на том или ином уроке, могут быть в это время недоступны для наблюдений. При планировании наблюдений этих объектов, в особенности планет, необходимо учитывать условия их видимости.

Введение

Введение в астрономию

Строение и масштабы Вселенной. Какие тела заполняют Вселенную. Каковы их характерные размеры и расстояния между ними. Какие физические условия встречаются в них. Вселенная расширяется. Современные методы наблюдений. Где и как работают самые крупные оптические телескопы. Как астрономы исследуют гамма-излучение Вселенной. Что увидели гравитационно-волновые и нейтринные телескопы.

Цель изучения данной темы — познакомить учащихся с основными астрономическими объектами, заполняющими Вселенную: планетами, Солнцем, звёздами, звёздными скоплениями, галактиками, скоплениями галактик; физическими процессами, протекающими в них и в окружающем их пространстве. Учащиеся знакомятся с характерными масштабами, характеризующими свойства этих небесных тел. Также приводятся сведения о современных оптических, инфракрасных, радио-, рентгеновских телескопах и обсерваториях. Таким образом, учащиеся знакомятся с теми небесными телами и объектами, которые они в дальнейшем будут подробно изучать на уроках астрономии.

Предметные результаты освоения темы позволяют: — воспроизводить сведения по истории развития астрономии, ее связях с физикой и математикой; — использовать полученные ранее знания для объяснения устройства и принципа работы телескопа.

Астрометрия

Звёздное небо. Созвездия северного полушария. Навигационные звёзды. Движение Солнца по эклиптике. Петлеобразное движение планет. Небесный экватор и небесный меридиан. Экваториальная и горизонтальная система небесных координат. Видимое движение небесных светил. Петлеобразное движение планет, попятное и прямое движение планет. Эклиптика, зодиакальные созвездия. Неравномерное движение Солнца по эклиптике. Движение Луны. Фазы Луны и синодический месяц, условия наступления солнечного и лунного затмений. Причины наступления солнечных затмений. Сарос и предсказания затмений. Время и календарь. Звёздное и солнечное время, звёздный и тропический год. Устройство лунного и солнечного календаря, проблемы их согласования. Юлианский и григорианский календари.

Целью изучения данной темы — формирование у учащихся о виде звёздного неба, разбиении его на созвездия, интересных объектах в созвездиях и мифологии созвездий, развитии астрономии в античные времена. Задача учащихся проследить, как переход от ориентации по созвездиям к использованию небесных координат позволил в количественном отношении изучать видимые движения тел. Также целью является изучение видимого движения Солнца, Луны и планет на основе этого — получение представления о том, как астрономы научились предсказывать затмения; получения представления об одной из основных задач астрономии с древнейших времён — измерении времени и ведении календаря.

Предметные результаты изучения данной темы позволяют: — воспроизводить определения терминов и понятий (созвездие, высота и кульминация звезд и Солнца, эклиптика, местное, поясное, летнее и зимнее время); — объяснять необходимость введения високосных лет и нового календарного стиля; — объяснять наблюдаемые невооруженным глазом движения звезд и Солнца на различных географических широтах, движение и фазы Луны, причины затмений Луны и Солнца; применять звездную карту для поиска на небе определенных созвездий и звезд

Небесная механика

Представления о строении Солнечной системы в античные времена и в средневековье. Гелиоцентрическая система мира, доказательство вращения Земли вокруг Солнца. Параллакс звёзд и определение расстояния до них, парсек. Открытие И.Кеплером законов движения планет. Открытие закона всемирного тяготения и обобщённые законы Кеплера. Определение масс небесных тел. Космические скорости. Расчёты первой и второй космической скорости и их физический смысл. Полёт Ю.А. Гагарина вокруг Земли по круговой орбите. Межпланетные перелёты. Понятие оптимальной траектории полёта к планете. Время полёта к планете и даты стартов. Луна и её влияние на Землю. Лунный рельеф и его природа. Приливное взаимодействие между Луной и Землёй. Удаление Луны от Земли и замедление вращения Земли. Прецессия земной оси и предварение равноденствий.

Цель изучения темы — развитее представлений о строении Солнечной системы: геоцентрическая и гелиоцентрические системы мира; законы Кеплера о движении планет и их обобщение Ньютоном; космические скорости и межпланетные перелёты

Предметные результаты освоения данной темы позволяют: — воспроизводить исторические сведения о становлении и развитии гелиоцентрической системы мира; — воспроизводить определения терминов и понятий (конфигурация планет, синодиче- ский и сидерический периоды обращения планет, горизонтальный параллакс, угловые размеры объекта, астрономическая единица); — вычислять расстояние до планет по горизонтальному параллаксу, а их размеры по угловым размерам и расстоянию; — формулировать законы Кеплера, определять

массы планет на основе третьего (уточ- ненного) закона Кеплера; — характеризовать особенности движения и маневров космических аппаратов для исследования тел Солнечной системы.

Строение солнечной системы

Современные представления о Солнечной системе. Состав Солнечной системы. Планеты земной группы и планеты-гиганты, их принципиальные различия. Облако комет Оорта и Пояс Койпера. Размеры тел солнечной системы. Планета Земля. Форма и размеры Земли. Внутреннее строение Земли. Роль парникового эффекта в формировании климата Земли. Исследования Меркурия, Венеры и Марса, их схожесть с Землёй. Влияние парникового эффекта на климат Земли и Венеры. Есть ли жизнь на Марсе. Эволюция орбит спутников Марса Фобоса и Деймоса. Планеты-гиганты. Физические свойства Юпитера, Сатурна, Урана и Нептуна. Вулканическая деятельность на спутнике Юпитера Ио. Природа колец вокруг планетгигантов. Планеты-карлики и их свойства. Малые тела Солнечной системы. Природа и движение астероидов. Специфика движения групп астероидов Троянцев и Греков. Природа и движение комет. Пояс Койпера и Облако комет Оорта. Метеоры и метеориты. Природа падающих звёзд, метеорные потоки и их радианты. Связь между метеорными потоками и кометами. Природа каменных и железных метеоритов. Природа метеоритных кратеров

Цель изучения темы — получить представление о строении Солнечной системы, изучить физическую природу Земли и Луны, явления приливов и прецессии; понять физические особенности строения планет земной группы, планет-гигантов и планет-карликов; узнать об особенностях природы и движения астероидов, получить общие представления о кометах, метеорах и метеоритах; узнать о развитии взглядов на происхождение Солнечной системы и о современных представлениях о её происхождении.

Предметные результаты освоения данной темы позволяют: — описывать особенности движения тел Солнечной системы под действием сил тяготения по орбитам с различным эксцентриситетом; — объяснять причины возникновения приливов на Земле и возмущений в движении тел Солнечной системы; формулировать и обосновывать основные положения современной гипотезы о формировании всех тел Солнечной системы из единого газопылевого облака: — определять и различать понятия (Солнечная система, планета, ее спутники, планеты земной группы, планеты-гиганты, кольца планет, малые тела, астероиды, планеты-карлики, кометы, метеороиды, метеоры, болиды, метеориты); — описывать природу Луны и объяснять причины ее отличия от Земли; — перечислять существенные различия природы двух групп планет и объяснять причины их возникновения; — проводить сравнение Меркурия, Венеры и Марса с Землей по рельефу поверхности и составу атмосфер, указывать следы эволюционных изменений природы этих планет; — объяснять механизм парникового эффекта и его значение для формирования и сохра- нения уникальной природы Земли; — описывать характерные особенности природы планет- гигантов, их спутников и ко- лец; — характеризовать природу малых тел Солнечной системы и объяснять причины их значительных различий; — описывать явления метеора и болида, объяснять процессы, которые происходят при движении тел, влетающих в атмосферу планеты с космической скоростью; — описывать последствия падения на Землю крупных метеоритов; — объяснять сущность астероидно-кометной опасности, возможности и способы ее предотвращения

Астрофизика и звездная астрономия

Методы астрофизических исследований. Устройство и характеристики телескопов рефракторов и рефлекторов. Устройство радиотелескопов, радиоинтерферометры. Солнце. Основные характеристики Солнца. Определение массы, температуры и химического состава Солнца. Строение солнечной атмосферы. Солнечная активность и её влияние на Землю и биосферу. Внутреннее строение Солнца. Теоретический расчёт температуры в центре Солнца. Ядерный источник энергии и термоядерные реакции синтеза гелия из водорода, перенос энергии из центра Солнца наружу, конвективная зона. Нейтринный телескоп и наблюдения потока нейтрино от Солнца. Определение основных характеристик звёзд: массы, светимости, температуры и химического состава. Спектральная классификация звёзд и её физические основы. Диаграмма "спектральный класс-светимость" звёзд, связь между массой и светимостью звёзд. Внутреннее строение звёзд. Строение звезды главной последовательности. Строение звёзд красных гигантов и сверхгигантов. Строение звёзд белых карликов и предел на их массу – предел Чандрасекара. Пульсары и нейтронные звёзды. Природа чёрных дыр и их параметры. Лвойные, кратные и переменные звёзды. Наблюдения двойных и кратных звёзд. Затменно-переменные звёзды. Определение масс двойных звёзд. Пульсирующие переменные звёзды, кривые изменения блеска цефеид. Зависимость между светимостью и периодом пульсаций у цефеид. Цефеиды – маяки во Вселенной, по которым определяют расстояния до далёких скоплений и галактик. Новые и сверхновые звёзды. Характеристики вспышек новых звёзд. Связь новых звёзд с тесными двойными системами, содержащими звезду белый карлик. Перетекание вещества и ядерный взрыв на поверхности белого карлика. Как взрываются сверхновые звёзды. Характеристики вспышек сверхновых звёзд. Гравитационный коллапс белого карлика с массой Чандрасекара в составе тесной двойной звезды – вспышка сверхновой І типа. Взрыв массивной звезды в конце своей эволюции – взрыв сверхновой ІІ типа. Наблюдение остатков взрывов сверхновых звёзд. Эволюция звёзд: рождение, жизнь и смерть звёзд. Расчёт продолжительности жизни звёзд разной массы на главной последовательности. Переход в

красные гиганты и сверхгиганты после исчерпания водорода. Спокойная эволюция маломассивных звёзд и гравитационный коллапс и взрыв с образованием нейтронной звезды или чёрной дыры массивной звезды. Определение возраста звёздных скоплений и отдельных звёзд, проверка теории эволюции звёзд.

Цель изучения темы — получить представление о разных типах оптических телескопов, радиотелескопах и методах наблюдений с их помощью; о методах и результатах наблюдений Солнца, его основных характеристиках; о проявлениях солнечной активности и связанных с ней процессах на Земле и в биосфере; о том, как астрономы узнали о внутреннем строении Солнца и как наблюдения солнечных нейтрино подтвердили наши представления о процессах внутри Солнца; получить представление: об основных характеристиках звёзд, их взаимосвязи, внутреннем строении звёзд различных типов, понять природу белых карликов, нейтронных звёзд и чёрных дыр, узнать как двойные звёзды помогают определить массы звёзд, а пульсирующие звёзды — расстояния во Вселенной; получить представление о новых и сверхновых звёздах, узнать, как живут и умирают звёзды.

Предметные результаты освоения темы позволяют: — определять и различать понятия (звезда, модель звезды, светимость, парсек, световой год); — характеризовать физическое состояние вещества Солнца и звезд и источники их энергии; — описывать внутреннее строение Солнца и способы передачи энергии из центра к поверхности; — объяснять механизм возникновения на Солнце грануляции и пятен; — описывать наблюдаемые проявления солнечной активности и их влияние на Землю; — вычислять расстояние до звезд по годичному параллаксу; — называть основные отличительные особенности звезд различных последовательностей на диаграмме «спектр — светимость»; — сравнивать модели различных типов звезд с моделью Солнца; — объяснять причины изменения светимости переменных звезд; — описывать механизм вспышек Новых и Сверхновых; — оценивать время существования звезд в зависимости от их массы; — описывать этапы формирования и эволюции звезды; — характеризовать физические особенности объектов, возникающих на конечной стадии эволюции звезд: белых карликов, нейтронных звезд и черных дыр.

Млечный Путь

Газ и пыль в Галактике. Образование отражательных туманностей. Причины свечения диффузных туманностей. Концентрация газовых и пылевых туманностей в Галактике. Рассеянные и шаровые звёздные скопления. Наблюдаемые свойства рассеянных звёздных скоплений. Наблюдаемые свойства шаровых звёздных скоплений. Распределение и характер движения скоплений в Галактике. Распределение звёзд, скоплений, газа и пыли в Галактике. Сверхмассивная чёрная дыра в центре Галактики и космические лучи. Инфракрасные наблюдения движения звёзд в центре Галактики и обнаружение в центре Галактики сверхмассивной черной дыры. Расчёт параметров сверхмассивной чёрной дыры. Наблюдения космических лучей и их связь с взрывами сверхновых звёзд.

Цель изучение темы — получить представление о нашей Галактике — Млечном Пути, об объектах, её составляющих, о распределении газа и пыли в ней, рассеянных и шаровых скоплениях, о её спиральной структуре; об исследовании её центральных областей, скрытых от нас сильным поглощением газом и пылью, а также о сверхмассивной чёрной дыре, расположенной в самом центре Галактики.

Галактики

Классификация галактик по форме и камертонная диаграмма Хаббла. Свойства спиральных, эллиптических и неправильных галактик. Красное смещение в спектрах галактик и определение расстояния до них. Закон Хаббла. Вращение галактик и тёмная материя в них. Активные галактики и квазары. Природа активности галактик, радиогалактики и взаимодействующие галактики. Необычные свойства квазаров, их связь с ядрами галактик и активностью чёрных дыр в них. Наблюдаемые свойства скоплений галактик, рентгеновское излучение, температура и масса межгалактического газа, необходимость существования тёмной материи в скоплениях галактик. Оценка массы тёмной материи в скоплениях. Ячеистая структура распределения галактики скоплений галактик

Цель изучения темы — получить представление о различных типах галактик, об определении расстояний до них по наблюдениям красного смещения линий в их спектрах, и о законе Хаббла; о вращении галактик и скрытой тёмной массы в них; получить представление об активных галактиках и квазарах и о физических процессах, протекающих в них, о распределении галактик и их скоплений во Вселенной, о горячем межгалактическом газе, заполняющим скопления галактик. Предметные результаты изучения темы позволяют: — объяснять смысл понятий (космология, Вселенная, модель Вселенной, Большой взрыв, реликтовое излучение); — характеризовать основные параметры Галактики (размеры, состав, структура и кине- матика); — определять расстояние до звездных скоплений и галактик по цефеидам на основе зависимости «период — светимость»; — распознавать типы галактик (спиральные, эллиптические, неправильные); — сравнивать выводы А. Эйнштейна и А. А. Фридмана относительно модели Вселенной; — обосновывать справедливость модели Фридмана результатами наблюдений «красно- го смещения» в спектрах галактик; — формулировать закон Хаббла; — определять

расстояние до галактик на основе закона Хаббла; по светимости Сверхновых; — оценивать возраст Вселенной на основе постоянной Хаббла;

Строение и эволюция Вселенной

Конечность и бесконечность Вселенной – парадоксы классической космологии. Закон всемирного тяготения и представления о конечности и бесконечности Вселенной. Фотометрический парадокс и противоречия между классическими представлениями о строении Вселенной и наблюдениями. Необходимость привлечения общей теории относительности для построения модели Вселенной. Связь между геометрических свойств пространства Вселенной с распределением и движением материи в ней. Расширяющаяся Вселенная. Связь средней плотности материи с законом расширения и геометрическими свойствами Вселенной. Евклидова и неевклидова геометрия Вселенной. Определение радиуса и возраста Вселенной. Модель "горячей Вселенной" и реликтовое излучение. Образование химических элементов во Вселенной. Обилие гелия во Вселенной и необходимость образования его на ранних этапах эволюции Вселенной. Необходимость не только высокой плотности вещества, но и его высокой температуры на ранних этапах эволюции Вселенной. Реликтовое излучение – излучение, которое осталось во Вселенной от горячего и сверхплотного состояния материи на ранних этапах жизни Вселенной. Наблюдаемые свойства реликтового излучения. Почему необходимо привлечение общей теории относительности для построения модели Вселенной

Цель изучения темы — получить представление об уникальном объекте — Вселенной в целом, узнать как решается вопрос о конечности или бесконечности Вселенной, о парадоксах, связанных с этим, о теоретических положениях общей теории относительности, лежащих в основе построения космологических моделей Вселенной; узнать какие наблюдения привели к созданию расширяющейся модели Вселенной, о радиусе и возрасте Вселенной, о высокой температуре вещества в начальные периоды жизни Вселенной и о природе реликтового излучения, о современных наблюдениях ускоренного расширения Вселенной, показать современные направления изучения Вселенной, рассказать о возможности определения расстояний до галактик с помощью наблюдений сверхновых звёзд и об открытии ускоренного расширения Вселенной, о роли тёмной энергии и силы всемирного отталкивания; учащиеся получат представление об экзопланетах и поиске экзопланет, благоприятных для жизни; о возможном числе высокоразвитых цивилизаций в нашей Галактике, о методах поисках жизни и внеземных цивилизаций и проблемах связи с ними.

Предметные результаты изучения темы позволяют: — оценивать возраст Вселенной на основе постоянной Хаббла; — интерпретировать обнаружение реликтового излучения как свидетельство в пользу гипотезы Горячей Вселенной; — классифицировать основные периоды эволюции Вселенной с момента начала ее расширения — Большого взрыва; Современные проблемы астрономии Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы. Сложные органические соединения в космосе. Современные возможности космонавтики и радиоастрономии для связи с другими цивилизациями. Планетные системы у других звезд. Человечество заявляет о своем существовании. Предметные результаты позволяют: систематизировать знания о методах исследования и современном состоянии проблемы существования жизни во Вселенной.

V. ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ

Планируемые результаты освоения курса

Личностными результатами освоения астрономии являются:

- умение управлять своей познавательной деятельностью;
- · готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- · умение сотрудничать с взрослыми, сверстниками, детьми младшего возраста в образовательной, учебноисследовательской, проектной и других видах деятельности;
- · сформированность мировоззрения, соответствующего современному уровню развития науки; осознание значимости науки, владения достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки; заинтересованность в научных знаниях об устройстве мира и общества; готовность к научно-техническому творчеству;
- чувство гордости за отечественную космонавтику, гуманизм;
- · положительное отношение к труду, целеустремлённость;
- · экологическая культура, бережное отношение к родной земле, природным богатствам России, мира и космоса, понимание ответственности за состояние природных ресурсов и разумное природопользование.

Метапредметными результатами освоения астрономии являются:

- 1. освоение регулятивных универсальных учебных действий:
- · самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;

- · оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- · сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
- определять несколько путей достижения поставленной цели;
- задавать параметры и критерии, по которым можно определить, что цель достигнута;
- сопоставлять полученный результат деятельности с поставленной заранее целью;
- · осознавать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей;
- 2. освоение познавательных универсальных учебных действий:
- · критически оценивать и интерпретировать информацию с разных позиций;
- · распознавать и фиксировать противоречия в информационных источниках;
- · использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развёрнутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- искать и находить обобщённые способы решения задач;
- · приводить критические аргументы как в отношении собственного суждения, так и в отношении действий и суждений другого человека;
- анализировать и преобразовывать проблемно-противоречивые ситуации;
- · выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
- · выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- · занимать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над её решением; управлять совместной познавательной деятельностью и подчиняться);
- 3. освоение коммуникативных универсальных учебных действий:
- · осуществлять деловую коммуникацию как со сверстниками, так и с взрослыми (как внутри образовательной организации, так и за её пределами);
- · при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т. д.);
- · развёрнуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- · распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы;
- согласовывать позиции членов команды в процессе работы над общим продуктом (решением);
- · представлять публично результаты индивидуальной и групповой деятельности как перед знакомой, так и перед незнакомой аудиторией;
- · подбирать партнёров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий:
- воспринимать критические замечания как ресурс собственного развития;
- · точно и ёмко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Предметными результатами освоения астрономии на базовом уровне являются:

- · сформированность представлений о строении Солнечной системы, эволюции звёзд и Вселенной, пространственно-временных масштабах Вселенной;
- понимание сущности наблюдаемых во Вселенной явлений;
- · владение основополагающими астрономическими понятиями, теориями, законами и закономерностями, уверенное пользование астрономической терминологией и символикой;
- · сформированность представлений о значении астрономии в практической деятельности и дальнейшем научнотехническом развитии;
- · осознание роли отечественной науки в освоении и использовании космического пространства и развития международного сотрудничества в этой области.

Выпускник научится:

- раскрывать на примерах роль астрономии в формировании современной научной картины мира и в практической деятельности человека, взаимосвязь между астрономией и другими естественными науками;
- —воспроизводить сведения по истории развития астрономии, ее связях с физикой и математикой;
- —использовать полученные ранее знания для объяснения устройства и принципа работы телескопа;
- воспроизводить горизонтальную и экваториальную системы координат;

- —воспроизводить определения терминов и понятий (созвездие, высота и кульминация звезд и Солнца, эклиптика, местное, поясное, летнее и зимнее время);
- —объяснять необходимость введения високосных лет и нового календарного стиля;
- —объяснять наблюдаемые невооруженным глазом движения звезд и Солнца на различных географических широтах, движение и фазы Луны, причины затмений Луны и Солнца;
- применять звездную карту для поиска на небе определенных созвездий и звезд;
- воспроизводить исторические сведения о становлении и развитии гелиоцентрической системы мира;
- —воспроизводить определения терминов и понятий (конфигурация планет, синодический и сидерический периоды обращения планет, горизонтальный параллакс, угловые размеры объекта, астрономическая единица);
- —вычислять расстояние до планет по горизонтальному параллаксу, а их размеры по угловым размерам и расстоянию;
- —формулировать законы Кеплера, определять массы планет на основе третьего (уточненного) закона Кеплера;
- —описывать особенности движения тел Солнечной системы под действием сил тяготения по орбитам с различным эксцентриситетом;
- —объяснять причины возникновения приливов на Земле и возмущений в движении тел Солнечной системы;
- —характеризовать особенности движения и маневров космических аппаратов для исследования тел Солнечной системы;
- —формулировать и обосновывать основные положения современной гипотезы о формировании всех тел Солнечной системы из единого газопылевого облака;
- —определять и различать понятия (Солнечная система, планета, ее спутники, планеты земной группы, планеты-гиганты, кольца планет, малые тела, астероиды, планеты-карлики, кометы, метеороиды, метеоры, болиды, метеориты);
- описывать природу Луны и объяснять причины ее отличия от Земли;
- —перечислять существенные различия природы двух групп планет и объяснять причины их возникновения;
- —проводить сравнение Меркурия, Венеры и Марса с Землей по рельефу поверхности и составу атмосфер, указывать следы эволюционных изменений природы этих планет;
- —объяснять механизм парникового эффекта и его значение для формирования и сохранения уникальной природы Земли;
- —описывать характерные особенности природы планет-гигантов, их спутников и колец;
- —характеризовать природу малых тел Солнечной системы и объяснять причины их значительных различий;
- —описывать явления метеора и болида, объяснять процессы, которые происходят при движении тел, влетающих в атмосферу планеты с космической скоростью;
- —описывать последствия падения на Землю крупных метеоритов;
- —объяснять сущность астероидно-кометной опасности, возможности и способы ее предотвращения.
- —определять и различать понятия (звезда, модель звезды, светимость, парсек, световой год);
- —характеризовать физическое состояние вещества Солнца и звезд и источники их энергии;
- —описывать внутреннее строение Солнца и способы передачи энергии из центра к поверхности;
- —объяснять механизм возникновения на Солнце грануляции и пятен;
- —описывать наблюдаемые проявления солнечной активности и их влияние на Землю;
- —вычислять расстояние до звезд по годичному параллаксу;
- —называть основные отличительные особенности звезд различных последовательностей на диаграмме «спектр светимость»;
- —сравнивать модели различных типов звезд с моделью Солнца;
- —объяснять причины изменения светимости переменных звезд;
- —описывать механизм вспышек Новых и Сверхновых;
- —оценивать время существования звезд в зависимости от их массы;
- —описывать этапы формирования и эволюции звезды;
- характеризовать физические особенности объектов, возникающих на конечной стадии эволюции звезд: белых карликов, нейтронных звезд и черных дыр;
- —объяснять смысл понятий (космология, Вселенная, модель Вселенной, Большой взрыв, реликтовое излучение);
- —характеризовать основные параметры Галактики (размеры, состав, структура и кинематика);

- —определять расстояние до звездных скоплений и галактик по цефеидам на основе зависимости «период светимость»;
- —распознавать типы галактик (спиральные, эллиптические, неправильные);
- —сравнивать выводы А. Эйнштейна и А. А. Фридмана относительно модели Вселенной;
- —обосновывать справедливость модели Фридмана результатами наблюдений «красного смещения» в спектрах галактик;
- формулировать закон Хаббла;
- —определять расстояние до галактик на основе закона Хаббла; по светимости Сверхновых;
- —оценивать возраст Вселенной на основе постоянной Хаббла;
- —интерпретировать обнаружение реликтового излучения как свидетельство в пользу гипотезы Горячей Вселенной;
- —классифицировать основные периоды эволюции Вселенной с момента начала ее расширения Большого взрыва;
- —интерпретировать современные данные об ускорении расширения Вселенной как результата действия антитяготения «темной энергии» вида материи, природа которой еще неизвестна;
- -систематизировать знания о методах исследования и современном состоянии проблемы существования жизни во Вселенной;
- -выполнять наблюдения в дневное и вечернее время.

Выпускник получит возможность научиться:

- формулировать цель исследования для определения разницы освещенностей, создаваемых светилами, по известным значениям звездных величин; использовать звездную карту для поиска созвездий и звезд на небе;
- самостоятельно планировать и проводить астрономические наблюдения за фазами движения Луны с соблюдением правил безопасной работы;
- интерпретировать данные о составе и строении Солнца, полученные с помощью современных методов;
- описывать состояние звезд на основе современных квантово-механических представлений о строении Вселенной;
- характеризовать параметры сходства внутреннего строения и химического состава планет земной группы; объяснять особенности вулканической деятельности и тектоники на планетах земной группы;
- формулировать основные постулаты общей теории относительности; определять характеристики стационарной Вселенной А. Эйнштейна; использовать эффект Доплера и его значение для подтверждения нестационарности Вселенной; характеризовать процесс однородного и изотропного расширения Вселенной; формулировать закон Хаббла.

Критерии оценивания учащихся.

Оценка ответов учащихся

Оценка «5» — ответ полный, самостоятельный правильный, изложен литературным языком в определенной логической последовательности. Ученик знает основные понятия и умеет ими оперировать при решении задач.

Оценка «4» — ответ удовлетворяет вышеназванным требованиям, но содержит неточности в изложении фактов, определении понятий, объяснении взаимосвязей, выводах и решении задач. Неточности легко исправляются при ответе на дополнительные вопросы.

Оценка «3» — ответ в основном верный, но допущены неточности: учащийся обнаруживает понимание учебного материала при недостаточной полноте усвоения понятий или непоследовательности изложения материала; затрудняется в показе объектов на звездной карте, решении качественных и количественных задач.

Оценка «2» — ответ неправильный, показывает незнание основных понятий, непонимание изученных закономерностей и взаимосвязей, неумение работать с учебником, звездной картой, решать задачи.

Критерии оценивания тестового контроля:

Оценка «2» - от 21 до 30 % правильно выполненных заданий.

Оценка «3» - 31 – 50 % правильно выполненных заданий.

Оценка (4) – 51 - 85 % правильно выполненных заданий.

Оценка «5» – от 86 до 100 % правильно выполненных заданий.

Оценка самостоятельных и контрольных работ

Оценка «5» ставится за работу, выполненную полностью без ошибок и недочётов.

Оценка «4» ставится за работу, выполненную полностью, но при наличии в ней не более одной грубой и одной негрубой ошибки и одного недочёта, не более трёх недочётов.

Оценка «3» ставится, если ученик правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочётов, не более одной грубой ошибки и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочётов, при наличии 4 - 5 недочётов.

Оценка «2» ставится, если число ошибок и недочётов превысило норму для оценки 3 или правильно выполнено менее 2/3 всей работы. Перечень ошибок:

Грубые ошибки

- 1. Незнание определений основных понятий, законов, правил, положений теории, формул, общепринятых символов.
- 2. Неумение выделять в ответе главное.
- 3. Неумение применять знания для решения задач; неправильно сформулированные вопросы, задания или неверные объяснения хода их решения.
- 4. Небрежное отношение к оборудованию.

Негрубые ошибки

- 1. Неточности формулировок, определений, законов, теорий, вызванных неполнотой ответа основных признаков определяемого понятия.
- 2. Ошибки в условных обозначениях на принципиальных схемах, неточности чертежей. Недочеты Небрежное выполнение записей, чертежей, схем. Орфографические и пунктуационные ошибки.

VI. Учебно-методическое обеспечение.

- 1. В.М. Чаругин Учебник для 10-11 класса
- 2. В.М. Чаругин Учебное пособие для образовательных организаций для 10-11 класса